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A large number of nucleophilic substitution reactions at
tetrahedral phosphorus are assumed to take place through a
trigonal bipyramidal (TBP) transition state.1,2 To rationalize the
stereochemistry of the products obtained in these reactions, it is
necessary to be able to assess the relative stabilities of various
TBPs that can be formed. The energy difference between two
isomeric TBPs can be ascertained in terms of the relative
preferences for the apical position (apicophilicity) of the attached
substituents (cf.A and B). The apicophilicity of a group is

assumed to depend on electronegativity,π-interactions (with
phosphorus), and steric factors,3,4 high apicophilicity being favored
by high electronegativity and small size. Most information on
relative apicophilicities has been obtained by NMR studies, and
on the basis of these Trippett and Corbridge have independently
given a relative scale for several substituents.3, 4

In cyclic phosphoranes with phosphorus as a part of a 4-7-
membered ring, the rings tend to prefer thea-e positions in the
solid state irrespective of the substituents.5,6 An interesting case
is the isolation of two stereoisomers for the spirophosphorane
(o-OC(CF3)2C6H4)2P(n-Bu) by Akiba et al.7 These isomers differ
in the relative orientations of the P-C and P-O bonds of the
five-membered rings, although the rings still span thea-e sites.
The same group has also reported the characterization of
configurationally stable enantiomeric and diastereomeric spiro-
phosphoranes containing similar ligands, with the five-membered
ring beinga-e in a TBP environment.8 A system in which the

a-e and e-e dispositions are equally feasible, depending on the
fifth substituent, is the sterically hindered eight-membered ring
present in1 and2.9-11 Hence, we felt that the relative apicophi-

licities of various groups can be conveniently ascertained using
the eight-membered ring. Herein, we demonstrate this utility by
determining the relative apicophilicities of several substituents
by means of solid-state structures.

The disposition of the substituents in all the seven spirocyclic
phosphoranes4-1012 is unambiguously proved by X-ray crystal-
lography.13,14 The essential features are summarized in Figure 1,

which shows the surrounding rings at phosphorus for the P-NMe2

and the P-NHMe compounds6‚CH3CN and9‚C6H5CH3 respec-
tively. Compounds4, 5‚C6H5CH3, and7‚ 1/2 C6H5CH3 have the
ring location and conformation analogous to those in6‚CH3CN,
while compounds8‚C6H5CH3 and10 have the ring location and
conformation analogous to those in9‚C6H5CH3. The bond
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parameters clearly show the trigonal bipyramidal geometry around
phosphorus. Important points to be noted here are the following.

(i) A secondary amino group (-NMe2) is more apicophilic than
a primary amino group (-NHMe). This is rather surprising
because the-NMe2 group is certainly bulkier than the-NHMe
group. Even from the point of view of (group) electronegativity,
we expect the-NMe2 group to have lower electronegativity
[Mulliken electronegativities:-NHMe, 8.5; -N(Me)Et, 8.415]
and hence lower apicophilicity than-NHMe. However, what is
observed is the opposite of this.

(ii) The phenyl group is definitely more apicophilic than the
methyl group. Although this is consistent with Trippett’s observa-
tion,3 it contradicts that of Corbridge.4

(iii) A structural proof for the high apicophilicity of anS-aryl
group (compound7) is provided convincingly.

(iv) Although the dicoordinated nitrogen in10should be more
electronegative than the tricoordinated nitrogen in6, it is less
apicophilic clearly because of steric factors. However, the

dicoordinated nitrogen connected to P in the azidophosphorane
4 is apical, because of lower steric constraints and higher group
electronegativity.15 The role of the eight-membered ring in placing
the azido group apical is also important; it is worth noting that in
the previously reported phosphorane [MeNC(O)NMe]2P(N3) the
azido group is placed equatorially.5a

The dimethylamino compound (6) shows three peaks in the
31P NMR spectrum (toluene-d8) at 233K (δ -42.2,-43.1,-47.1).
As the temperature is raised, the two downfield signals merge,
whereas the upfield signal broadens and starts diminishing in
intensity. At higher temperatures only one signal (δ -42.8), nearly
at the center of the downfield signals, is observed. A similar
behavior is noticed in the1H NMR also. The31P NMR spectrum
(toluene-d8) of the methyl compound (8) shows two major peaks
at δ -15.8 and-21.0 and a small peak atδ -27.2 at 233 K; the
peaks atδ -15.8 and-27.2 broaden and disappear at higher
temperatures. These results suggest the preference for one of the
stereoisomers in each case at higher temperatures. Holmes and
co-workers have observed two31P NMR signals for some
phosphoranes containing eight-membered rings; however, in their
case the isomer ratio remained unchanged throughout the tem-
perature range studied.16

In conclusion, we have devised a way to ascertain unequivo-
cally the relative apicophilicities of several functional groups.
Distinction between the more apicophilic substituents, such as
-OR, -SR, etc., may perhaps be made by modifying the eight-
membered ring in spirocyclic phosphoranes, for instance, by
changing thet-Bu group at the 6-position toi-Pr.17
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Figure 1. Molecular structures of (a)6‚CH3CN and (b)9‚C6H5CH3

showing only selected atoms around phosphorus. Selected bond distances
and angles: (a)6‚CH3CN, P-O(1) 1.601(3), P-O(2) 1.598(3), P-O(3)
1.657(3), P-O(4) 1.764(3), and P-N(1) 1.682(3) Å, and O(4)-P-N(1)
174.92(16)°; (b) 9‚C6H5CH3, P-O(1) 1.600(3), P-O(2) 1.641(3), P-O(3)
1.646(3), P-O(4) 1.756(4), and P-N(1) 1.611(5) Å, and O(4)-P-O(2)
175.65(17)°.
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